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1. Introduction 

The modelling of complex systems is a very difficult task especial because of big number of components 
and dependencies between them. The Petri net represents one of the most attractive formalisms used to 
analyse such systems, because it may model any type of structural dependency and several types of time 
dependency as well. Anyway, the Petri is hard to evaluate in case of complex systems with many 
components. For building and analysing a Petri net two main techniques are available. Composition 
methods use subnet modules, which are combined in order to obtain the final net. Decomposition methods 
are based on splitting the net into subnets, which are evaluated separately, the obtained results being used 
to evaluate the whole net (Tuffin 2000). In some cases, the subnets may communicate each other through 
tokens (Gustavson 1995). 

2. Petri net decomposition method 

The present method can be used for timed Petri nets as GSPN or ESPN. In order to evaluate the systems’ 
availability, a special part of the net is developed for checking whether the current state of the system is 
successfully or not. This subnet might be very useful especially for complex systems, which logical 
expression of success states is too difficult to be developed. In such cases the Petri net can be built as 
follows: 
a) timed subnets modelling the systems’ components and their functional and stochastic dependencies 
b) a quotient net, that contains only immediate transitions, used to determine whether the current state of 
the system is successful or not (Ionescu 2002). 
In order to evaluate the systems’ availability in a much easier manner, we have to take advantage of 
subsystems’ independence and to do that we have to use a decomposition method. The proposed method 
is based on identification of subnets that contains at least a timed transition and that are independent each 
other. This means that anything happens inside a subnet nothing changes in the others except the quotient 
net. Before presenting the decomposition method, we introduce the following definitions. 
Definition 1. The dependency relations between two nodes of the net (places/transitions) are defined by: 

a) A transition t depends directly by a place p (
D

p t⇒ ) iff there is an input arc (normal or inhibitor) from 
p to t or if p appears in t’s predicate. 

b) A place p depends directly by a transition t ( ) iff there is a normal arc from t to p. 
D

t⇒ p

1c) Node n1 depends indirectly by node n2 ( ) iff there is chain of direct dependencies from n2

D
n n⇒ 2 to n1. 

Definition 2. An independent subnet is a part of the Petri net that has no dependency relations with any 
outer timed transitions and that meets the following requirements: 
a) The subnet contains at least one timed transition. 

b) It includes only timed transitions t for that, there is at least one node n in the subnet such that . 
D

n t⇒
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c) It contains any node n for that, there is at least a timed transition t in the subnet such that . 
D

n t⇒

d) The subnet includes any node n1 that has the following property: 2 2 1,
D

n n n∀ ⇒ , n2 is included in the 
subnet. 
e) The subnet includes only the arcs that connect nodes from it. 
f) It contains no other independent subnet. 
Definition 2 assures that, for a particular Petri net, there is only one way to divide it into independent 
subnets.  
According to these definitions, in order to identify the independent subnets an algorithm was developed. 
It uses a recursive procedure (CHECK). CHECK procedure starts from a transition t0. That represents the 

first component of the current subnet. All places p with property  are added to the current subnet. 
If some of these places belong to other subnets too, these subnets and the current one are concatenated. 
For each of these places that were not checked before, there are identified the transitions t with property 

. If some of these transitions belong to other subnets too, these subnets and the current one are 
concatenated. For each of these transitions that were not checked before, CHECK procedure is called. The 
recursive procedure ends when no more unchecked transitions are found. 

0

D
p t⇒

D
t⇒ p

The algorithm consists in two loops. In first one, each timed transition is checked, one by one. If the 
transition doesn’t belong to any subnet, a new subnet is created for it and CHECK procedure is called. 
After that, in the second loop each node, which doesn’t belong to any subnet, is checked whether it 
verifies point d of definition 2. If it does it is included in the corresponding subnet. 
Following this algorithm all independent subnets and quotient net are identified. 

3. Probabilistic evaluation method 

Based on previous decomposition method, a probabilistic approach was developed in order to assess the 
system’s availability. Before presenting the proposed approach, the following definitions are given. 
Definition 3. A timed transition is called failure transition if its firing causes the unavailability of at least 
one system’s component. 
Definition 4. A failure marking (FM) is called minimal (MFM) if there is no other FM such that it is 
possible the net to pass from FM directly to MFM, following the firing of a failure transition. 
So, a MFM is a FM with a minimal number of failures. By firing a failure transition, it’s possible to arrive 
on MFM only by leaving a success marking (SM). Of course, there is possible to pass directly from a FM 
to MFM, but by firing a transition that is not a failure one. If the system, which is modelled with the Petri 
net, has binary and independent components, than a MFM represents a minimal cut-set of the system. 
Definition 5. A failure trajectory (FT) is a trajectory during that the Petri net passes from initial marking 
(SM), through several intermediary markings (SM), to the final marking (FM). 
Such a trajectory has the significance of an ordered set of timed transitions, the last one moving the net to 
a FM (see figure 1). Markings M0, M1, .., Mk-1 are SM but the final marking Mk is a FM. 
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Figure 1: Failure trajectory 

Definition 6. A minimal failure trajectory (MFT) is a FT that has the following property: there is no 
possible order of transitions passing such that the net reaches a FM, before the same final marking. 
Definition 7. The marking  of subnet “i” has a lower level of failure than marking  (of the same 1

im 2
im



subnet), if there is at least one combination of markings , ,1jm j i j NS∀ ≠ ≤ ≤  (NS is the number of 

independent subnets) for that the marking of the net ( )1,i jM m m  is a successful one and the marking 

( 2 ,i j )M m m  is a failure one. Otherwise,  has a level of failure higher or equal to . 1
im 2

im

Definition 8. The set of markings ,*
k
iM , corresponding to a subnet “i” and a MFM “k”, is defined by: 

, m,*
k

im M∀ ∈ i

⎟

i represents a level of failure higher or equal to , where m,*
k
im i is a marking of subnet i and 

 is the marking of subnet “i” corresponding to MFM “k”. ,*
k
im

The probabilistic evaluation approach assumes the system modelled with Petri net has two characteristics: 
a) It is coherent. 
b) Each MFM can be reached by starting from M0 and by firing only failure transitions. 
According to previous definitions and hypotheses, the following theorems can be demonstrated. 
Theorem 1. For any MFM, there is at least one MFT that links M0 to it. 

Theorem 2. The set  represents the set of all FM (N,*
1 1

SF NN
k
i

k i

M
= =

⎛ ⎞
⎜
⎝ ⎠
∪ ∩ F is the number of MFMs). 

The first step, after net’s decomposition and development of reachability graph for each independent 
subnet, is to find MFMs. In order to find all MFMs, the net has to be simulated and MFTs have to be 
found. According to theorem 1, identification of MFTs is sufficient to determine all MFMs. After MFMs 
identification, the next step is to find markings’ sets ,*

k
iM  given by definition 8. According to theorem 2, 

these sets can be used to express the set of failure markings F. 
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Therefore, by applying Sylvester-Poincare formula on equation (1), it follows: 
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where ( ),*
k
iP M  is the probability that subnet “i” to be in one of the markings included in ,*

k
iM . As a 

result, we can calculate the probability the system to be in a failure state if we know the probability 
 the net to be in a marking m( )iP m i of independent subnet “i”, ,1 Si i N∀ ≤ ≤ . Probabilities ( )iP m  can 

be evaluated for each subnet separately, starting from any initial marking we want. 

4. Study case 

In order to test the method, a benchmark (Bouissou 1998) was solved using our dedicated software PNS 
(Ionescu 2003), in which the present method was implemented. The analysed system includes the 
following components: one A component, two C components, two D components and eight E 
components. Each component has two possible states: up and down, and has different functional 
capacities (see figure 2.a). Therefore, the system may function at different capacity levels (100%, 90%, 
70%, 60%, 40% and 30%). In order to evaluate the system’s availability, a Petri net was developed (see 



figure 2.b). Each immediate transition from the net was conditioned by a logical expression that is a 
function of places’ tokens number (see table 1). PNS split the net into 4 independent subnets and a 
quotient net (see table 2). The possible markings of each subnet are given in table 3. For each capacity 
level MFMs were found and system’s availability was evaluated (in table 4 there are presented MFMs and 

,*
k
iM  sets corresponding to first capacity level – 100%). The steady state availabilities calculated with 

PNS (using the new method and classical Markov process) and the ones provided by developer of the 
benchmark (Bouissou 2000) are presented in table 5. The absolute truncation error used for Sylvester 
Poincare formula was 1e-10. 

Table 1: Logical expressions of immediate transitions 

T9: A=1 T12: MIN(P9,MIN(4,4*C)+3*D)-P10<0 
T10: A=0 T13: MIN(P10,1.5*E)-SUCCESS>0 AND E>5
T11: MIN(P9,MIN(4,4*C)+3*D)-P10>0 T14: MIN(P10,1.5*E)-SUCCESS<0 OR E<6 

Table 2: Independent subnets 

 Subnet 1 Subnet 2 Subnet 3 Subnet 4 Quotient net 
Places A, P2 C, P4 D, P6 E, P8 P9, P10, SUCCESS 
Transitions T1, T2 T3, T4 T5, T6 T7, T8 T9, T10, T11, T12, T13, T14

Table 3: Subnet’s markings 

Subnet 1 Subnet 2 Subnet 3 Subnet 4 
(1,0); (0,1) (2,0); (1,1); (0,2) (2,0); (1,1); (0,2) (8,0); (7,1); (6,2); (5,3); (4,4); (3,5); (2,6); (1,7); (0,8)

Table 4: MFMs and ,*
k
iM  sets – 100% capacity 

MFM 1 1
,*iM  sets MFM 2 2

,*iM  sets 
1
1,*m : (0,1) 1

1,*M : (0,1) 2
1,*m : (1,0) 2

1,*M : (1,0); (0,1) 
1
2,*m : (2,0) 1

2,*M : (2,0); (1,1); (0,2) 2
2,*m : (0,2) 2

2,*M : (0,2) 
1
3,*m : (2,0) 1

3,*M : (2,0); (1,1); (0,2) 2
3,*m : (2,0) 2

3,*M : (2,0); (1,1); (0,2) 
1
4,*m : (8,0) 1

4,*M : (8,0); (7,1); (6,2); (5,3); 
(4,4); (3,5); (2,6); (1,7); (0,8) 

2
4,*m : (8,0) 2

4,*M : (8,0); (7,1); (6,2); (5,3); 
(4,4); (3,5); (2,6); (1,7); (0,8) 

MFM 3 3
,*iM  sets MFM 4 4

,*iM  sets 
3
1,*m : (1,0) 3

1,*M : (1,0); (0,1) 4
1,*m : (1,0) 4

1,*M : (1,0); (0,1) 
3
2,*m : (2,0) 3

2,*M : (2,0); (1,1); (0,2) 4
2,*m : (2,0) 4

2,*M : (2,0); (1,1); (0,2) 
3
3,*m : (1,1) 3

3,*M : (1,1); (0,2) 4
3,*m : (2,0) 4

3,*M : (2,0); (1,1); (0,2) 
3
4,*m : (8,0) 3

4,*M : (8,0); (7,1); (6,2); (5,3); 
(4,4); (3,5); (2,6); (1,7); (0,8) 

4
4,*m : (6,2) 4

4,*M : (6,2); (5,3); (4,4); 
(3,5); (2,6); (1,7); (0,8) 



Table 5: tem’s availabilities 

 100% 90% 70% 60% 40% 30% 
Proposed method 9.6552E-01 9.3223E-03 1.9497E-02 1.1605E-03 9.7485E-05 2.3211E-05
Markov process 9.6552E-01 9.3223E-03 1.9497E-02 1.1605E-03 9.7485E-05 2.3211E-05
(Bouissou 2000) 9.6552E-01 9.3223E-03 1.9497E-02 1.1605E-03 9.7485E-05 2.3211E-05

 
a.     b. 

Figure 2: a. Capacity diagram of the system; b. The Petri net 

5. Conclusions 

In this paper a new method for evaluation of systems’ availability was presented. This new method has 
some important advantages. It allows the identification and hierarchy of system’s failure states based on 
levels of failure at independent subnets’ level. Also, in order to evaluate the probabilities of subnets’ 
markings, different probabilistic evaluation methods can be used (Markov process, Monte Carlo 
simulation etc.) depending the nature of each subnet’s transitions. For this reasons, in case of multi-
components systems, the computing time required by this method is much smaller than the one of a 
classical approach. 
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